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Abstract -The  behaviors of concentric-double inclusions dispersed in continuous media are investigated theoretical- 
ly to find some possibilities of improving toughness of composite materials by dispersing double-inc'usions instead 
of single-inclusions. The general solutions of the Stokes equation, expressed in terms of the spherical harmonics, 
are used for analyzing the problems that are related to the concentric-double inclusions. From the analysis, it is 
found that the pressure and stress fields inside and outside the inclusion can be modified by changing the modulus 
ratios and the thickness of shell layer. Especially, the positions of the minimum pressure points and the maximum 
stress points turn out to be controllable with some degree of freedom. 
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INTRODUCTION 

Multiphase systems that consist of dispersed particles in contin- 
uous media are widely found both in nature and in man-made 
situations. The words closely related to multiphase systems are 
suspensions, slurries, colloids, composite materials, etc. The sys- 
tems of particles; suspended in continuous media generally exhibit 
a variety of remarkable macroscopic properties. In practical appli- 
cations, we are interested in such collective effects of particles 
that can be represented as the effective transport properties such 
as viscosity, modulus, mobility, conductivity, etc. Thus, the main 
efforts of developing theories of multiphase systems have been 
focused on the predictability of macroscopic properties by consid- 
ering the behaviors and characteristics of individual particles. 

Lately active experimental investigations have been performed 
to obtain some excellent macroscopic properties of the composite 
materials [Fowler et al,, 1987; Gebizlioglu et al., 1990; Lovell et 
al., 1991; Laurienzo et al., 1992]. It is common that multiphase 
structures are formed due to lack of miscibility in a molecular 
level when the polymers of different properties are mixed. In 
some cases, unique and excellent macroscopic properties can be 
obtained by taking advantage of such structures formed by phase 
separation. Thus, various investigators have sought the ways of 
improving toughness of material by adjusting the pressure and 
stress fields when the material is subject to certain strain fields. 
One way of achieving such modification is to make composite 
systems of different phases with different properties via phase 
separation or solidifying the multiphase fluids. Most experimental 
works thus far, however, have relied on trial-and-error method. 
In other words, not many experiments have been per[ormed un- 
der a priori theoretical guidances because of lack of theoretical 
results in this fields [Matonis, 1969; Ricco et aL, 1980: Moshev, 
1980~. 

In the present work, as an elementary step toward the develop- 
ment of theories; for toughness improvement of composite mate- 
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Fig. 1. A concentric-double inclusion in a strain field (The strain field 
is axisymmetric with respect to x-axis). 

rials, we have considered a concentric-double elastic inclusion 
under the given strain fields. As a solution method, we have used 
the general solution of the Stokes equation, expressed in terms 
of the spherical harmonics. With the analytical solutions, we have 
analyzed the pressure-stress fields inside and outside the inclu- 
sion to find some possibility of improving toughness while the 
macroscopic bulk properties of the composite material remain un- 
changed. As will be shown later, we have found the possibility 
of changing the positions of failure points by modifying the modu- 
lus ratios and the thickness of shell structure. Although very sim- 
ple in analysis, the results are certainly expected to play a role 
as a theoretical guidance for the experimental works for improv- 
ing toughness of composite materials. 

PROBLEM S T A T E M E N T  AND D E V E L O P M E N T  

We consider a concentric-double-inclusion in a continuous elas- 
tic medium subject to a given strain field as sketched in Fig. 
1. The concentric-double-inclusion consists of the inner part 
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(phase I) of modulus G~ and Of radius aro (ru<l), and the shell 
part (phase II) of modulus G2 and of thickness a (1 -  ro). The inclu- 
sion is dispersed in the continuous elastic medium (phase IIl). 
The far field strain tensor (or undisturbed strain tensor field) 
is denoted by E. For simplicity, we assume that the whole system 
is under isothermal condition and that each phase is incompress- 
ible. It is also assumed that there is no interfacial energy between 
phases. Thus, the traction (n'T) must be continuous across the 
phase boundaries. 

The problem we want to solve is to find the pressure and stress 
fields in each phase for a given E field. For the given far field 
strain tensor, the phase boundaries undergo deformation and in 
general the problem becomes extremely difficult because the 
shapes of the phase boundaries must be determined simultaneous- 
ly. Thus, for simplicity, as in many other stress analysis problems 
of solid mechanics, the modulus of each phase is assumed to be 
sufficiently large so that the deformations of phase boundaries 
are negligibly small (In other words, IIEll is assumed Io be suffi- 
ciently small even though IIGEII has some finite value.). Under 
this assumption, we can safely neglect the effect of deformations 
of phase boundaries and we can apply the boundary conditions 
at r = a  and r=ar0. The problem will be solved via spherical har- 
monics to obtain the pressure and stress fields inside and outside 
the concentric-double-inclusion. Then the solution will be used 
to estimate the macroscopic modulus of the composite material 
with concentric-double-inclusions in the dilute regime. 

Under the assumptions stated above, the governing equations 
for the phases, [, II and III, are given by the Stokes equation 
and the continuity equation (due to incompressibility assumption) 

- V~(.! + Gl./V2fi~.! = 0, (1) 

~z.ii~.~=0, (n= 1, 2, 3) (2) 

where ~.~ is the hydrostatic pressure of the n-th phase, fi~.~ the, 
displacement vector of the n-th phase, and G(.~ the shear modulus; 
(Hereinafter, the mathematical accent tilde is for the dimensional 
variables of pressure, displacement vector, and stress and strain 
tensors.). As. shown in Eqs. (1) and (2), the governing equations; 
are the same for the viscous fluid flows with the velocity vector 
u and the viscosity IJ. Boundary conditions at the interfaces are 
given by 

n.l"<l)=n.l"121 at I~l =aro, (3) 

n-Tml=n-'F~3~ at I~l=a, (4) 

where 1" is the stress tensor defined by 

T = - ~I + G(V6 + ~Tfi,). (51) 

The far field strain tensor is given by 

1 0 0 

o o - 5  

In order to nondimensionalize the governing equations anti 
boundary conditions, we introduce the following characteristic 
scales: 

Gau~ 
l, = a, u. = Ed,, p, 1, (6) 

Then the governing equations appropriate to the problem describ- 
ed above are given by 

Phase I : V-u(v-0,  vpm-ctV2u(l~, (7) 

Phase [I : V. u~2~= 0, gp(21 = ~V2Ul2,, (8) 

Phase [II:  V. ur 0, Vp~a~= V2uc~, (9) 

where ct and [3 are the parameters defined as 

G, [3= G z  (10) 
ct = G~-3' G3 " 

The suitable boundary conditions are 

u.;--~finite as ]x]~,O, (11) 

U(1) = U(2} 

n ' T , l / - n ' T / ~  at Ixl=r0, (12) 

U(2) : U(3) 

n.TCe>=n'T~3~ at Ix [= l ,  (13) 

uial-+E-x as [ x [ ~ .  (14) 

From the above dimensionless formulation, it should be noted 
that the global problem has three parameters a, !8, and ro, which 
play important roles in the discussions of the results. 

The solution method of the Stokes equation via the spherical 
harmonics is well explained in the reference ELeal, 1992]. But 
here we briefly review the method to explain our solutions for 
the concentric-double inclusion problem. The Stokes equation 
with the continuity equation 

pV~u= Vp, V . u = 0  

is linear and has some nice properties. The first is that the pres- 
sure is harmonic, i.e. 

V'-'p = 0. (15) 

The second feature is that a general solution of the Stokes equa- 
tion is given by 

- -  ~ H',, (16) 
u 2p P+u~ ' 

where u {m is the homogeneous solution. Substituting Eq.(16) into 
the Stokes equation, we can easily see that u {m is also harmonic, 

i . e .  

V2u c~ = 0. (17) 

In order to satisfy the continuity equation, the harmonic function 
u ~ must satisfy the condition, 

V-u ~m= - +  [3p+x.Vp] .  (18) 

To develop a general solution for the Stokes equation, we intro- 
duce harmonic functions, expressed in a coordinate-independent 
vector form using the position vector x. Harraonic functions, the 
fundamental solutions of the Laplace equation, involve only the 

general position vector x and its magnitude r - ! x l .  It is conveni- 
ent to divide the harmonic functions into two categories : decaying 
harmonics and growing harmonics. The decaying harmonics whose 
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magnitude decrease with [xl are represented by means of higher- 
order gradients of 1/r. Some decaying harmonics are 

1 x xx I 
etc. (19) 

r ' ~ '  r ~ 3r  ~' 

On the other hand, some of the growing harmonics whose magni- 

tude increases with Ixl are 

1, x, x x - 3 1 ,  etc. (20) 

Now, the general solution for u and p in our concentric-double 
inclusion problem can be constructed in terms of the strain tensor 
E and the harmonic functions in vector form. We begin with the 
pressure p~a~ and the velocity u~3~ for the region III. In this case, 

as we can see in Eq. (9), we may put ~t= 1 for the general solution 
procedure. For simplicity, we reformulate the problem in terms; 

of the disturbance variables u~ and I ~  defined as 

u& = u/s~- E" x. (21) 

Then the boundary conditions are changed to 

~ , = u , 2 ~ - E . x  at I x ! = l ,  (22) 

ff3~-*0 as I xl--~oc. (23) 

Thus, u~:~,, ~ are decaying functions of r. To construct a solution 
for u[3) and t~ ,  we begin with the pressure l~qr which is a har- 
monic scalar function. Since P'3 is a decaying harmonic function 
that is linear in E, the only true scalar that can be formed by 

E and the decaying harmonic functions in Eq. (19) is 

Since trace of E equals zero due to the incompressibility assump- 

tion, this simplifies to 

, ~ [ x ' E ' x 7  
p(3) ~--- 1,.~ l [ ~ ] .  (25) 

The constant C~ will be determined by applying the boundary 
conditions for u~:~). On the other hand, u tm is a decaying harmon- O) 
ic function that is; linear in E and is a true vector. The combination 
of E and the vector harmonic functions which satisfies these con- 

ditions is obtained by 

r e x  [ - ( x ' E ' x ) x ]  2 C [  E ' x ]  
ul~=C~L r + ~ [ _ ~ J  5-3L~c- j (26) 

The constants C~ and C:~ are arbitrary, apart from the constraint 
Eq. (18), which insures that the continuity equation is satisfied. 

The condition of Eq. (18) yields C2=0. Thus, combining Eqs. (25) 
and (26) in terms of the general solution form, Eq. (16), we find 

that the velocity field u~a~ is given by 

By following the same procedures, we can obtain uo~, p,~, u~ and 

p~2~ in terms of growing harmonics, and decaying and growing har- 
monics, respectively. 

p(, = CIO(X ~ E" X), (28) 

pl> = C ~ [ ~ - ]  + CKx" E" x), (29) 

2 + 5r 2 
u.,-- ---21ct Clo(x-E.x)x 21ct Clo+Cu(E'x) .  (30) 

u a l -  2[3 - ~ CsCx" E" x)x 

E ' x  5r ~ ' 

To determine the eight constants C~, C3, C4, Ca, C7, C8, C~0, Cu, 
and thus to complete our solution of the problem, we apply the 
boundary conditions (12) and (13) at r =  1 and ru. Then, we can 
obtain the eight equations that have 8 unknown constants. The 
eight algebraic equations may be solved to calculate the eight 
constants for a given set of parameters ct, [3, and to. 

R E S U L T S  AND DISCUSSION 

I. P r e s s u r e  a n d  T~ F i e l d s  

Among the major concerns in the processing of composite ma- 
terials are the occurrence of material failure and the propagation 
of fractures when the material is subject to certain strain fields. 
Two quantities that are closely related to the failure points and 
the propagation of fractures are the pressure and Tx~ (when E~ 
is the major component of the strain), As well known, the pressure 
field in a single homogeneous medium is harmonic. Therefore 
the minimum and maximum values should exist only on the 
boundary. Thus, in the case of infinite homogeneous medium, 
tlle pressure field should be constant since there is no boundary. 
Similarly, the concentration of stress does not occur in a homoge- 
neous medium when the material undergoes strain fields. How- 
ever, for a composite material, that is not the case. Due to the 
interactions of the continuous and dispersed phases, the pressure 
and stress cannot be uniform and there exist maximum stress 
points and minimum pressure points. We call this phenomenon 

the stress concentration in the composite materials. From a stand- 
point of material failure, the minimum pressure point corresponds 
to the point where cavitation occurs. On the other hand, T~,, which 
is the x-directional force acting on the unit area of the plane whose 
normal is in x-direction, can provide a measure of possibility of 
fracture propagation. Therefore, if the pressure minimum point 
coincides with the maximum T~, point, then it is very probable 
that the material failure occurs at the point. 

As mentioned earlier, the main objective of the present work 
is to find some possibilities of adjusting the pressure-stress fields 
by modifying the parameters ct, [3, and r0. Now, let us start with 
our discussion for the cases of single inclusions. 
1-1. Single Inclusions 

In this subsection, we are concerned with the pressure-stress 
response of single spherical inclusion ( a =  [3 case) when the mate- 
rial is subject to given strains. Here, we consider two cases. One 
is for c t=[3<l  and the other is for a = ~ > i .  To investigate the 
effect of modulus of inclusion, we have analyzed the pressure and 
stress fields (T~). In Fig. 2, the pressure and stress fields are 
shown for a system with a single inclusion. The stress field is 
for the component T,~, which is the stress in x-direction acted 
on x-plane. When a - [ 3 < l ,  i.e., the modulus of inclusion is less 
than that of matrix [Fig. 2(a)], the minimum value of pressure 
and the maximum value of stress are located at the same points 
of the inclusion boundary, which are the equator points (0=n/2)  
with respect to the direction of given strains. On the other hand, 
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Pressure field Stress field (T~) 

Strains ~ Strains 
- -  D 

Fig. 2. Pressure and stress fields for a system with a single inclusion 

when (a) a=[3=0,5<1,  (b) ct=[3=2.0>i .  

Strains 
41 

J 

Strains 

{a) (b) 

Fig. 3. Photographs of crazed sampled (reprinted from Wang et al., 

1971). 
(a) rubber ball, (b) steel ball 

in the case of harder inclusion than the matrix, the pressure mini- 
mum points are located at the poles. But the stress maximum 
points are located between the poles and the equator. 

In both cases, we may assume that the cavitation occurs at 
the minimum pressure points and the fracture is propagated from 
the stress maximum point to the matrix phase when the strains 
are imposed. From the pressure and 3"= fields in Fig. 2, we can 
expect that fracture occurs at the equator (0=n/2)  in the case. 
of ct=13<l but fracture may occur in the wider region between 
the pole and the maximum T= point in the case of ct=-[3>l. The 
above point may well be verified by the experimental results of 
Wang et al. ~1971~. Photograph in Fig. 3(a) shows how the frac- 
ture propagates into the matrix phase in the c t=[3<l  case. As 
shown in the photograph, propagation starts at the equator of 
the rubber ball. As shown in Fig. 3(b), our analytical prediction 
for the c t=[3>l  case is also consistent with the experimental re- 
sult on the case of steel ball. The numerical values of the mini- 
mum pressure and the maximum stress are tabulated for the 
ct=[3<l  cases and c t=[3>l  cases in Tables 1 and 2, respectively. 
As we can see in the tables, the degree of stress concentration 
or pressure minimization increases as the relative difference o[ 
moduli of inclusion and matrix increases. In other words, the 
degree of stress concentration increases as the degree of non-ho- 

mogeneity of the material increases. 
Another conclusion we may draw from the analysis for the sin- 

gle inclusion case is that microscopic failure is practically inevita- 
ble because of the high stress concentration for either case of 

Table I. Numerical values of pressure minimum and stress maximum 
for the case of elastic single inclusion with a=[~<l 

ct=[3 Tm,~ P~,, 
0.01 6.589 3.278 
0.1 5.937 - 2.813 
0.5 3.750 - 1.250 
0.9 2292 - 0.208 

"fable 2. Numerical values of pressure minimum and stress maximum 

for the case of elastic single inclusion with c~=13>1 

a=[3 T .... P~,, 
1.5 2.500 - 0 . 8 3 3  

2.0 3.211 - 1.428 
I0.0 5.318 - 3.913 

100.0 7.214 - 4.877 

a = [ 3 < l  or c t - [3>l .  This point provides us a strong motivation 
to seek other ways of modifying stress fields. As one of such 
efforts, we consider concentric-double inclusions, which will be 
discussed next. 
1-.2. Concent ric-Double-Inclusions 

As mentioned earlier, we are concerned with the effects of the 
first and second layers with the modulus ratios ct and 13 on the 
stress and pressure fields in the composite materials. The thick- 
ness of the second layer, 1- r0 ,  is also an important factor in 
this analysis. 

Firstly, we have considered the double inchasions of the cases 
of gradual softening (ct<[3<1) and gradual hardening (ct>[3>l) 

as shown in Figs. 4(a) and 4(b). To see the effect of thickness 
of the second layer, we have considered r , - 0 . 5  and r .=0.95 for 
both cases. When the thickness of the second layer is 0.05 (i,e., 
r,)-0.95), the behaviors of double inclusions are more or less 
the same as those of single inclusions. However, when we have 
reduced r,, to 0.5 (increased the thickness of the second layer), 
remarkable changes in the behavior have been observed. As we 
can see in Figs. 4(a) and (b), the maximum stress points moved 
to the inner boundary (Compare with the cases of r,,=0.95). Espe- 
cially, in the case of gradual softening (~t<~;<l), the pressure 
minimum points have also moved to the inner boundary. EFig. 
4(a)~. These changes in the response to the given strain fields 
have v e r y  significant implications in the studies of composite ma- 
terials. As mentioned earlier, for composite materials with single 
inclusion it is inevitable that material failures would propagate 
into the matrix. However, in the cases of double inclusion compo- 
site material, the failure propagation may be confined in the sec- 
ond layer. Thus, we may improve the toughness of the composite 
material significantly in some cases. 

Secondly, we have tried to modify the stress fields around the 
very hard inclusion by covering it with the second layers. For 
very hard center inclusion (c~= 10, r.=0.5), we have considered 
both very soft ([3=0.001) and moderately hard ([3=1.5) second 
layers. As shown in Fig. 5, the hard inclusion covered with very 
soft layer of thickness r0= 0.5 behaves just like a soft single inclu- 
sion as expected. However, the one with moderately soft layer 
behaves like the inclusion of gradual hardening (c~>[3> 1) and the 
pressure minimum points and the stress maximum points have 
moved to the inner boundary, 
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Pressure field Stress field (T~)  Pressure field Stress field (Tx~) 

v 

\ 
A 

Strains Strains re=0.5 - - - ~ , .  

r 0 = 0.95 

Fig. 4(a). Pressure and stress fields for double inclusions of gradual 
softening (a=0.5,  13=0.8) when r0 values are 0.5 and 0.95. 

Strains Strains 
4 c~=tO [3=0.001 

o . = l O  9=1.5 

Fig. 5. Pressure and stress fields for inclusions of very hard cores ( a =  
IO, to=0.5) covered with very soft ([3=0.001) and moderately 
hard (13= 1.5) material. 

Pressure field Stress field (T~)  

Strains Strain,'; 
- -  r o = 0.5 - - _ ~ .  

ro = 0.95 

Fig. 4(b). Pressure and stress fields for double inclusions of gradual 
hardening (ct=2.0, 13= 1.5) when ro values are 0.5 and 0.95. 

In the third, we have investigated the effect of covering of hard 
core ( a =  10) with rubbery material (I 3 = 0.001) for various covering 
thickness. The results are shown in Fig. 6. As shown in the figure, 
the double inclusions behave just like soft single inclusions dis- 
persed in the matrix until n~ value increases to r~)=0.9. However, 
fundamental change in the response has been observed when 
r0 reaches 0.95, at which the pressure minimum occurs at the 
poles of the inner boundary, and the stress maximum occurs 
at the poles of tile outer boundary. Since the probability that cavi- 
tation occurs at the pressure minimum point is very high, micro- 

Pressure field 

Strains 

O 

r0= 0.5 

Stress field (Tx~) 

Strains 

ro= 0.9 

ro= 0.95 

Fig. 6. Pressure and stress fields for inclusions of very hard cores (u=  
IO) covered with rubbery material (13=0.001) of various values 
of thickness (r0=0.5, 0.9, 0.95). 

scopic cavities may be formed near the inner boundary by coating 
the hard core with a very thin rubbery materials. 

Finally, in Fig. 7, we have shown the results for the moderately 
hard core coated with very soft material. We have investigated 
two cases of medium hardness ( a=0 .8  and a= l . 5 ) .  For both 
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Pressure field' Stress l ield (T~x) 2.0 

Strains Strain s 
,I a = 0.8 13 = 0.001 - - - ~ , -  

e t = l . . 5  [ 3 = 0 . 0 0 1  

Fig. 7. Pressure and stress fields for inclusions of the cores of medium 
hardness (ct=0.8, a :  1.5) coated with very thin soft material 

(13 = 0.001, r0 = 0.95). 

cases, we have found quite interesting behaviors. The pressure 
minimum point occurs at the poles of the inner boundary, while 
the maximum T= points occur at the equator of the outer bound- 
ary. Since two points are far apart, it is probable for microscopic 
cavities to be formed near the inner boundary without fracture 
propagation when the composite materials are subject to strain 
fields. 

So far we have discussed the behaviors of the double inclusions 
under the given strain fields. Although the results on the double 
inclusions are limited, we have found the possibilities of modifying 
the characteristics of the stress and pressure fields, which cannot 
be achieved in the cases of single inclusions. Therefore, it is ex- 
pected that the results from the analyses shown above may pro- 
vide guidelines for designing composite materials with improved 
properties. 
2. Effect ive Modulus  of  C o n c e n t r i c - D o u b l e - I n c l u s i o n  Sys-  
t em 

The problem of deducing macroscopic rheological behavior of 
heterogeneous system from its microscopic structural properties 
has received considerable attention. In the present section, we 
want to predict the effective modulus of dilute composite mate- 
rials which are composed of concentric-double-inclusions with ar- 

bitrary ct, [3, and r0. 
Batchelor [1970] proposed a relation between the bulk stress 

and the stress of individual particles of any concentrations. The 
relation is 

E,~ - 8,~E~ = 2~E,j + lgl~ ~, (32) 

where the first term on the right-hand side is the stress that 
would be generated due to the ambient field in the absence of 
the particles. The second term on the right-hand side of Eq. (32) 
is the particle stress that is given by 

tP~ 1 
Y'0 = v E S o  (:33) 

1.5-  

............... a=!3=2.0 

, . ........................ ~'i ......... a=13=1.5 

. ~  1.0 ~-'~':"': . . . . . .  matr ix  
(..9 

% 

� 9  ............. a=13--0.5 

0 . 5 -  

"~=13--o.t 

0 .0  I ! I 
0.0 0.1 0.2 0.3 0.4 

r 

Fig. 8. Effects of  the modulus of  binded single inclusion (ct=[8)  on 

the relative modulus (G*/G) in dilute regime. 

1,00 

0.98 

0.96 

(.9 

L9 

0.94 

0.92 

0.90 

a=o .5  13=0.8 

I I I I 
O.O 0.2 0.4 0,6 0.8 1,0 

ro 

Fig. 9. Effects of r0 on the relative modulus (G*/G) of double inclusion 
system of gradual softening ( a = 0 . 5 ,  13=0.8) when r is 0.1. 

where S,) is the force dipole strength which depends on the size, 
shape and orientation of the particles. In tile dilute case, the 
stresslet So is appeared in the solution of the Stokes equation for 

the disturbance variable u' in the form 

3 S x,x,x, 
__ _ _  ~ u  ~ .  + . . . .  

ttence the first approximation to the particle stress [Batchelor 
and Green, 1972a, 1972b] in terms of S,~ is given as 

~,,~_ 3 0  S,,, (35)  

where r is the volume fraction of the spherical particles of radius 
a. We have followed Batchelor and Green to obtain the following 
expression for the effective modulus G*, 

G* = G(1 + gO), (36) 

Korean J. Ch. E.(Vol. 13, No. 2) 



200 

I .I0 -- 

H. J. Cho and I. S. Kang 

1 . 6  

1.08 - -  

1.06 - -  

(.9 

1.04 - -  

1 .o2  - 

1 .oo  - i 

o o 02 

cc = 2.0 = ~ ,  . / / /  

I I I 
0.4 0.6 0.8 1.0 

ro 

Fig. 10. Effects o1' ro on the relative modulus (G*/G) of double inclu- 
sion system of gradual hardening ( a = 2 . 0 ,  [3=1.5) when r 
is 0.1. 

1 . 1  

1.0 [ / ~  ~ ' "  ro = 0.95 .--..- 

o l  

0.0 0.2 0.4 06 08 1.0 

P 
Fig. 11. Effects el' the modulus of the seeondaff layer for r,~=0.5 and 

ro=0.95 on the relative modulus G*/G when a and 0 are 
2.0 and ll.0, respectively. 

where y is defined as 

C1 (37) 
u 2 "  

In Eq. (37), C1 is the constant that was introduced earlier in Eq. 
(24). It can be computed as a function of ct, 13, and ro by applying 
the boundary conditions as mentioned earlier. 

The results obtained for various a, 13, ra values are summarized 
in Figs. 8 to 11. In all figures, however, we must note that it 
is assumed that the concentration of the particle is small. As 
shown in Fig. 8, the relative modulus increases as the modulus 
of binded single particle ( a =  9) increases. The results, shown in 
Fig. 8 are already well known from the theories of single inclu- 
sions. To investlgate the effect of ro, we have considered two 
cases as shown in Figs. 9 and 10. In Fig. 9, the relative modulus 

1.5 

A r i t h m e t i c  

1 . 3  

"(.9 

1.2 

/ E f f e c t i v e  

1.1 

1 . 0  I I I I 

0.0 0.l 0.2 0.3 0.4 0.5 
volume fraction (~) 

Fig. 12. Comparison of effective modulus with arithmetic mean modu- 
lus for dilute double inclusions ( a = 2 . 0 ,  13= 1.5). 

decreases as r~ increases when the volume fraction ~ is 0.1. This 
is obvious because as r0 increases the volume of the first layer 
with lower modulus increases. A similar observation can be made 
also in Fig. 10. In Fig. l l ,  the effects of the modulus of the second 
layer for fixed r0 = 0.5 and 0.95 are shown. In Fig. 12, the effective 
modulus is compared with the arithmetic mean. The effective 
modulus is lower than the arithmetic mean value as shown by 
the general theorem of Batchelor E1974]. 

CONCLUSION 

The behaviors of concentric-double-elastic inclusions dispersed 
in continuous media have been investigated theoretically. From 
the analyses for the pressure and stress fields, it has been found 
that the positions of minimum pressure points and the maximum 
stress points can be controlled with some degree of freedom by 
changing the modulus ratios and the thickness of the shell layer. 
Thus, it is expected that the results from the present work may 
provide good guidelines for designing composite materials with 
improved properties. 
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N O M E N C L A T U R E  

a :characteristic length scale 
E :far  field strain tensor 
E .  :x-directional strain component acting on the plane whose 

normal is in x-direction 
G~,) : shea r  modulus of the nth phase 
p,~ :pressure  of the nth phase 
p' : disturbance pressure 
n, :shell  thickness parameter (r0_<l) 
S,j :force dipole strength 
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T~ :x-directional stress component acting on the plane whose 
normal is in x-direction 

u~.~ :displacement vector of the nth phase 
u' :disturbance displacement vector 
u ~m :homogeneous solution of u 
V :volume of composite material 
x : position vector 

Greek Let ters  
a :ratio of shear modulus G~ to G3 
[3 :ratio of shear modulus G~ to G.~ 
p :viscosity of fluid medium 

:volume fraction of the spherical particles of radius a 
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